Call for Abstract

6th International Conference on Biostatistics and Bioinformatics, will be organized around the theme “Exploring Advances in Biostatistics & Bioinformatics”

Biostatistics 2017 is comprised of keynote and speakers sessions on latest cutting edge research designed to offer comprehensive global discussions that address current issues in Biostatistics 2017

Submit your abstract to any of the mentioned tracks.

Register now for the conference by choosing an appropriate package suitable to you.

It encompasses the statistical strategies which are accustomed to govern uncertainties in the field of medicine and health. It comprehends biostatistics in clinical research and clinical trials, biostatistics research and methodology, clinical decision making, statistical methods in diagnostic drugs , statistical and computing methods.

  • Track 1-1Biostatistics in Clinical research
  • Track 1-2Biostatistics research and methodology
  • Track 1-3Clinical decision making
  • Track 1-4Statistical methods in diagnostic medicine
  • Track 1-5Basic Statistics of Biomarkers and Clinical Trials
  • Track 1-6Biomedical Statistics

It includes strategies which are utilized as a part of biostatistics and computing. It incorporates points such as vigorous techniques in biostatistics, longitudinal studies, analysis with deficient data, meta-analysis, Monte-Carlo strategies, quantitative issues in health-risk analysis, statistical methodologies in genetic studies, ecological statistics and biostatistical routines in epidemiology.

  • Track 2-1Longitudinal studies
  • Track 2-2Analysis with incomplete data
  • Track 2-3Meta-Analysis
  • Track 2-4Quantitative problems in health-risk analysis
  • Track 2-5Biostatistical methods in epidemiology

It is a subset of the sphere of statistics during which the proof about the concerning verity of the world is expressed in terms of degrees of belief or, ma lot specifically, Bayesian probabilities. It includes of varies approaches like Bayesian inference, stochastic structural improvement and Bayesian statistics, semi-parametric Bayesian analysis, Bayesian multiple modification point analysis, infrared spectroscopic analysis with Bayesian statistics and Bayesian dynamic models.

  • Track 3-1Stochastic structural optimization and bayesian statistics
  • Track 3-2Semi parametric bayesian analysis
  • Track 3-3Bayesian multiple change point analysis
  • Track 3-4Infrared spectroscopy with bayesian statistics
  • Track 3-5Bayesian dynamic models

It is the study of science that deals with the statistical methods for describing and comparing the phenomenon of particular subject which helps in managing medical uncertainties. Its applications are wide spread in medicine, health, biology etc. for interpretation of data based on observations and facts.

  • Track 4-1Biostatistics in pharmacy
  • Track 4-2Biostatistics in medical
  • Track 4-3Biostatistics in healthcare
  • Track 4-4Biostatistics in genetics
  • Track 4-5Ecological statistics

In statistics study, regression analysis has been statistical process for estimating the relationships among variables. It includes several techniques for modelling and analysing many variables, once the main focus is on the link between a dependent variable and one or a lot of freelance variables. This track contains numerous sub topics like linear and non-linear analysis, variance and regression analysis, statistical methods for categorical data analysis, multiple regression with categorical information and biostatistical analysis software.

  • Track 5-1Linear and non-linear analysis
  • Track 5-2Analysis of variance and regression
  • Track 5-3Multiple regression with categorical data
  • Track 5-4Robust methods in biostatistics
  • Track 5-5Biostatistical analysis softwares

It incorporates the different civilized systems utilized as a part of the biostatistical data analysis. Different subjects which are being incorporated are data sets, hierarchical models, causal inference, nonparametric alongside the statistical genetics, Mantel–Haenszel test and the biometric ramifications of these data analysis methods

  • Track 6-1Large data sets
  • Track 6-2Hierarchical models
  • Track 6-3Biometric implications
  • Track 6-4Mantel–Haenszel test
  • Track 6-5Causal inference

Structural bioinformatics is a sub discipline of bioinformatics that deals with the three dimensional structures of biomolecules. This field portrays the goals to create methods for manipulating information about biological macromolecules and the application of these methods to solve problems in biology and creating new knowledge. It attempts to model and discover the basic principles underlying biological machinery at the molecular level. Structural bioinformatics combines applications of physical and chemical principles with algorithms from computational science. With the success of the genome sequencing projects, the evolution of high-throughput methods for expression analysis and compound identification, structural bioinformatics is now resurgent and is doing its part to accelerate the drug discovery process. The techniques that structural bioinformatics involves are particularly valuable in the area from target identification to lead discovery. Structural bioinformatics can be used for function and ligand prediction in the case of novel targets.

  • Track 7-1RNA structure and function
  • Track 7-2Protein structure analysis
  • Track 7-3Protein structure and function prediction

Systems biology includes the study of systems of biological components, which may be molecules, cells, organisms or entire species. Systems Biology deals with data and models at many different scales, from individual molecules through to whole organisms. Computational systems biology addresses questions fundamental to our understanding of life and progress here will lead to practical innovations in medicine, drug discovery and engineering. It aims to develop and use efficient algorithms, data structures, visualization and communication tools with the goal of computer modelling of biological systems. Systems Biology approach harnesses the power of computation and systems-level analyses to formulate and solve critical biological problems. This integrative approach of systems biology will close the loop from individual genetics to populations, and constitute the strongest asset for the successful translation of systems biology findings to clinical applications.

  • Track 8-1Cancer systems biology
  • Track 8-2Systems theory for complex dynamical systems
  • Track 8-3Machine learning algorithm

Biostatistics is a branch of applied statistics and deals with developing and applying techniques to summarize and evaluate medical and biological data. The field of biostatistics to bioinformatics furnish quantitative answers to complicated questions from complicated data. The dominant objective of this conference is to conceive a medium for statisticians from across the world to present their latest study, discovery in statistical applications which can prompt novel research projects and directions as well as improve statistical programs. Specialized and technical methods have been made and are currently advancing in the fields of biostatistics and bioinformatics as a mutual resource to exhibit them with a wide range of favourable applications in genetics, genomics, and biomedical areas. The doctrine of biostatistics and bioinformatics will be popularized through driving applications which offers learning approach and therefore, is available to a wide range of fields.

  • Track 9-1Computational Statistics
  • Track 9-2Bayesian Methods
  • Track 9-3Statistical Genetics
  • Track 9-4Medical Statistics and Informatics

Practically about 600 bioinformatics tools were advanced over the past two years, and are being used to facilitate data analysis and its interpretation. Web assistance in bioinformatics provides interfaces that have been developed for an ample array of applications for bioinformatics. The main enhancement derived from the fact that end users do not have to deal with software and database preservation overheads. There are differing software predominant for bioinformatics like open-source, sequence alignment, healthcare, freeware molecular graphics systems, biomedical and molecular mechanics modelling. In more recent advances, the equivalent of an industrial revolution for ontology was pronounced by the apparition of latest technologies representing bio-ontologies.

  • Track 10-1Web services in bioinformatics
  • Track 10-2Bioinformatics Tools & Software
  • Track 10-3Biological databases

Biometric security: It incorporates different biometric devices and calculations which are utilized to execute security in today's universe of innovation. Biometrics security incorporates different points like Personal identity verification, Human activity acknowledgment, Legal similarity for biometric systems, Crime counteractive action,, Biometric devices and calculations, Behavioral intelligence, Biometric arrangements, biometric security authentication and multi touch displays in biometrics.

  • Track 11-1Personal identity verification
  • Track 11-2Human activity recognition
  • Track 11-3Legal compatibility for biometric systems
  • Track 11-4Crime prevention
  • Track 11-5Biometric devices and algorithm
  • Track 11-6Behavioral intelligence
  • Track 11-7Multi touch displays in biometrics
  • Track 11-8Advances in biometric security systems
  • Track 11-9Palm print identification and fingerprinting
  • Track 11-10Biometric solutions
  • Track 11-11Biometric security authentication

Statistical genetics is a scientific field concerned with the development and application of statistical methods for drawing inferences from genetic data. The term is most commonly used in the context of human genetics

  • Track 12-1Genetics and quantitative Genetics
  • Track 12-2Phylogenetic analysis
  • Track 12-3Principal component analysis in Genetics
  • Track 12-4Linear mixed models (LMM) in Genetics
  • Track 12-5Mutation models